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1. Introduction

Uniform design was motivated by three projects in system engineering in 1978 (see Fang
(1980) and Wang and Fang (1981)). It has been widely used in various fields, such as
industry, system engineering, pharmaceutics, and natural sciences (see Fang and Lin (2003)
and Fang et al. (2000)). Generally speaking, uniform design is a type of “space filling”
design for computer experiments (Bates et al. (1996)). However, If we restrict the domain
to certain lattice points, then uniform design is also a fractional factorial design. Many
criteria for measuring discrepancy of designs have been proposed in the literature. See,
for example, Hickernell (1998a) and Hickernell (1998b). A fractional factorial design is
referred to as a uniform design if it achieves the smallest value under a certain measure of
discrepancy.

There are several methods to construct uniform designs such as the good lattice
method (Wang and Fang (1981), Fang and Wang (1994)), Latin square method (Fang,
Shiu and Pan (1999)), expending orthogonal design method (Fang (1995)), optimization
searching method (Winker and Fang (1998), Fang, Ma and Winker (2002)). However,
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most of these methods are limited to obtain uniform designs with small number of runs.
A relatively effective method for constructing uniform designs with modest and large
scale is established via combinatorial configurations. The goal of this talk is to present
two constructions for uniform designs from combinatorics. One is obtained by resolvable
PPBDs which serves to unify some known combinatorial constructions. The other provides
a recursive method to obtain a new three-level uniform design from old one.

2. The Construction via Resolvable PPBDs

To present our constructions we require some combinatorial terminology. Let us first
define the notion of a partially pairwise balanced design (PPBD) which is resolvable.

Let K be a set of positive integers and I a set of nonnegative integers. By an
(n,K, I)-partially pairwise balanced design, or a (n,K, I)-PPBD, we mean a pair (V,A)
such that the following properties are satisfied:

1. V is a set of n treatments called points;

2. A is a family of subsets of V called blocks;

3. each block has size k ∈ K;

4. any pair of distinct points is contained in exactly λ blocks for some λ ∈ I.

Suppose that (V,A) is a (n,K, I)-PPBD. A parallel class in (V,A) is a collection of
disjoint blocks from A whose union is V . A partition of A into parallel classes is called a
resolution, and (V,A) is said to be resolvable, denoted by (n,K, I)-RPPBD, if A has at
least one resolution.

In statistical experiment, it is hoped that a factorial design X should contain no fully
aliased column, that is, each of its column cannot be obtained from another column by a
permutation of levels. In view of this, we require an (n,K, I)-RPPBD to have no identical
parallel classes. Such RPPBDs will be denoted by (n,K, I)-R̃PPBD. For convenience,
we also write D(n; m; q1, q2, · · · , qm) for the set of all factorial designs of n runs and m
factors with q1, q2, · · · , qm levels in turn. Obviously, any X ∈ D(n; m; q1, q2, · · · , qm) can
be thought of as an n×m matrix with entries 1, 2, · · · , qi at the i-th column.

Consider an (n,K, I)-R̃PPBD, (V,A). Let V be In = {1, 2, . . . , n}. Assume that A
can be partitioned into m parallel classes A1,A2, · · · ,Am where the j-th class contains qj

blocks. Then we can construct a factorial design X ∈ D(n; m; q1, · · · , qm) from (V,A) in
the following way:

1. For each parallel class Aj (1 ≤ j ≤ m), assign a natural order 1, 2, · · · , qj to its qj

blocks in an arbitrary order.

2. For 1 ≤ j ≤ m, associate Aj with a vector of length n, Xj , in such a way that its i-th
coordinate (1 ≤ i ≤ n) has value w ∈ {1, 2, . . . , qj} if and only if point i is contained
in the w-th block in Aj .
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3. Take X = (XT
1 , XT

2 , · · · , XT
m), where XT

j is the transpose of Xj .

Moreover, the inner structure of the R̃PPBD ensures that the derived fractional
factorial design is uniform. To be precise, if we use the “Discrete Discrepancy” (see,
Hickernell (1998a)) as the measure of uniformity, we then have the following theorem.
The proof of this theorem was developed in Fang, Tang and Yin (2002).

Theorem 2.1 Let (V,A) be an (n, K, {λ1, λ2})-R̃PPBD satisfying |λ1−λ2| ≤ 1. Then the
factorial design X derived from (V,A) is a uniform design under “Discrete Discrepancy”.

We give a simple example to illustrate the above construction.

Example 2.2 Let V = {1, 2, 3, 4, 5, 6}. Then the following 4 classes of blocks form a
(6, {2, 3}, {1, 2})-R̃PPBD:

{1, 2, 3} {1, 2, 4} {1, 5} {1, 6}
{4, 5, 6} {3, 5, 6} {2, 6} {2, 5}

{3, 4} {3, 4}

The derived uniform design is as follows:

row 1 2 3 4
1 1 1 1 1
2 1 1 2 2
3 1 2 3 3
4 2 1 3 3
5 2 2 1 2
6 2 2 2 1

Recent years it has been received much attention the relationship between optimal
factorial designs or uniform designs under certain criteria and combinatorial configurations
such as pairwise balanced designs (PBDs) and balanced incomplete block designs (BIBDs).
Vital papers in this area include Nguyen (1996), Cheng (1997), Liu and Zhang (2000), Lu,
Hu and Zheng (2003), Fang et al. (2003a, 2003b) and the references therein.

R̃PPBDs are related to many well-known combinatorial configurations which are
resolvable. Clearly, if I = {λ}, then an (n,K, I)-RPPBD is nothing else than a resolvable
PBD (or RPBD for short). In this case, it is often written as RB(K,λ;n). Further,
if K = {k}, it is well-known as a resolvable BIBD (RBIBD) or an RB(k, λ; n). Also, if
λ2 = λ1+1, a (n,K, {λ1, λ2})-RPPBD can be viewed as a resolvable (n,K, λ2) packing, as
well as a resolvable (n,K, λ1) covering. Therefore, the construction described above serves
to unify many known constructions for uniform designs via combinatorial configurations.

It is worth mentioning that a (n,K, I)-RPPBD can exist without any numerical re-
striction on its parameters, while other combinatorial designs such as RPBDs and RBIBDs
are generally restricted by certain congruence conditions on their parameters. Therefore,
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the construction described above makes also a relaxation of the parameters regarding the
existing constructions for uniform designs via combinatorial configurations.

Our construction translates essentially an (n,K, {λ1, λ2})-R̃PPBD with |λ1−λ2| ≤ 1
to a uniform design under Discrete Discrepancy. Though research on RPPBDs has mainly
concentrated on certain special cases in combinatorial theory, numerous existence results
and techniques can be modified to produce a large number of such R̃PPBDs which create
uniform designs. Here we do not go much deeper. Instead, we will give some examples.
Let us first make an example for some small values of n.

Example 2.3 For any n ∈ {4, 5, 6, 7, 8, 9}, there exists an (n, {2, 3}, {1, 2})-R̃PPBD.

Notes: For these stated values of n, an (n, {2, 3}, {1, 2})-R̃PPBD can be constructed
directly. For instance, take the set of treatments as Z8. Then the following 4 parallel
classes of blocks form a (8, {2, 3}, {1, 2})-R̃PPBD:

{0, 2, 4} {0, 1, 2} {2, 3, 6} {1, 3, 7}
{1, 3, 5} {3, 4, 5} {0, 5, 7} {0, 4, 6}
{6, 7} {6, 7} {1, 4} {2, 5}

To make more examples, we need a few auxiliary designs which we define now.

Definition 2.4 A group divisible design (k, λ)-GDD of type gu is a triple (V,G,B) which
satisfies the following properties:

1. V is a set of cardinality gu called points;

2. G is a partition of V into u g-subsets called groups;

3. B is a collection of k-subsets of V (called blocks) such that a group and a block
contain at most one common point;

4. every pair of points from distinct groups occurs in exactly λ blocks.

A (k, λ)-GDD is said to be resolvable (RGDD) if its blocks can be partitioned into
parallel classes, each of which partitions the point set V .

A (k, λ)-frame of type gu is a (k, λ)-GDD of type gu whose blocks can be partitioned
into partial parallel classes, each partitioning V \G for some G ∈ G.

Remarks: It is easy to construct a (n, {2, 3}, {1, 2})-R̃PPBD for any integers n ≥ 10 by
the R̃PPBDs given in Example 2.2, in conjunction with the existence of a (3, 1)-frame of
type 6u (Stinson (1987)), a (3, 2)-frame of type 1u without identical blocks (Shen (1990))
and a ({2, 3}, 1)-RGDD of type 23 with 3 parallel classes of blocks.

Example 2.5 Both an (n, {3, 4}, {0, 1})-R̃PPBD with n ≥ 36 and an (n, {2, 3}, {0, 1})-
R̃PPBD with n ≥ 18 exist.

Notes: It is known (see Ling and Ge (2003)) that a (4, 1)-RGDD of type 12u exists for
all integers u ≥ 4 and u 6= 27. Delete e (1 ≤ e ≤ 12) points from a certain group of such a
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RGDD. This produces an (n, {3, 4}, {0, 1})-R̃PPBD with n ≥ 36 and n /∈ {12 · 26, · · · , 12 ·
27}. For the outstanding values of n, the R̃PPBD can be constructed directly. Start with
a (3, 1)-RGDD of type 6u with u ≥ 4 (see Rees (1993)). and employ the same technique
as above to get an (n, {3, 4}, {0, 1})-R̃PPBD with n ≥ 18.

Example 2.6 Let n ≥ 5 and n ≡ 0 mod 12. Then there exists an (n, {3, 4}, {1, 2})-
R̃PPBD.

Notes: It was proved (see Ge (2001))that a (4, 1)-frame of type 12u exists for u ≥ 5.
Replacing each group of such an RGDD with a copy of a R̃B(3, 2; 12) gives us the R̃PPBD,
as desired.

3. The Recursive Construction

In this section, we present a recursive construction for three-level experimental designs,
which are uniform in the sense of the wrap-around discrepancy (Hickernell (1998b)). This
criterion is based on the coincide number between any two distinct runs. If we denote by
xi and xj the i-th and the j-th runs, then the coincide number between these two runs
λij is the number of positions where xi and xj take the same value. Obviously, λij = λji

and λii is the factor number. The following result can be found in Fang, Lu and Winker
(2003).

Theorem 3.1 For a U(n, 3m),

(WD2(P))2 ≥ −(
4
3
)
m

+
1
n

(
3
2
)
m

+
n− 1

n
(
23
18

)
m

(
27
23

)
λ

, (1)

where λ = m(n−3)
3(n−1) . The lower bound can be achieved if and only if λ is an integer and for

all i 6= j, λij = λ.

It is not difficult to extend Theorem ?? to the case where λ = m(n−3)
3(n−1) is not an

integer. We state it in the following theorem.

Theorem 3.2 For a U(n, 3m),

(WD2(P))2 ≥ −(
4
3
)
m

+
1
n

(
3
2
)
m

+
n− 1

n
(φ+1−λ)(

23
18

)
m

(
27
23

)
φ

+
n− 1

n
(λ−φ)(

23
18

)
m

(
27
23

)
φ+1

,

(2)
where λ = m(n−3)

3(n−1) and φ = bλc. The lower bound can be achieved if and only if for all
i 6= j, λij = φ or φ + 1.

Motivated by a construction for combinatorial configurations contained in Furino,
Miao and Yin (1996), we found a recursive method to obtain a new uniform design under
WD2 from old one, which is stated in the following way.
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Theorem 3.3 Let t ≥ 2 be a positive integer. If a uniform design U3p(33p−1) achieving
the lower bound (??) in Theorem ?? exists, then so does a uniform design U3tp(33tp−2)
achieving the lower bound (??) in Theorem ??.

What Theorem ?? says is that if we happen to have a uniform design U3p(33p−1)
under WD2 achieving the lower bound (??) in Theorem ??, then we can recursively obtain
an infinite class of uniform designs of the form U3tp(33tp−2) under WD2 which achieves
the lower bound (??) in Theorem ??. To describe the recursive procedure of Theorem ??,
we use the notation Qm = {1, 2, · · · , q}m to indicate the experimental points of designs.

Consider a U3p(33p−1) achieving the low bound (??) in Theorem ??, X = (xij)3p×(3p−1),
over Q. We have λX = (3p−1)(3p−3)

3(3p−1) = p−1, and λij = λX for all 1 ≤ i 6= j ≤ n by Theorem
??.

Now, for each column x(j) = (x1j , x2j , · · · , x3pj)T of X, define three vectors y(jt) =
(y1,jt, y2,jt, · · · , y9p,jt)T (t = 1, 2, 3), where

yi,jt =





xij if 1 ≤ i ≤ 3p,
x(i−3p)j + t (mod 3) if 3p < i ≤ 6p,

x(i−6p)j − t + 3 (mod 3) if 6p < i ≤ 9p.

We then utilize these three vectors y(jt) (j = 1, 2, · · · , 3p − 1, t = 1, 2, 3) to form a 9p ×
(9p − 3) matrix, and append a column (13p,23p,33p)T to this matrix. This produces a
9p× (9p− 2) matrix Y , where x3p = (x, x, · · · , x)1×3p and x = 1, 2, 3.

We claim that Y is a uniform design U9p(39p−2) which achieves the lower bound in
Theorem ??. To see this, it is sufficient to show that all λij ’s (i 6= j) for Y are equal to 3p−2
or 3p− 1 by Theorem ??, since λY = (9p−2)(9p−3)

3(9p−1) = 3p− 2 + 6p
9p−1 , φY = bλY c = 3p− 2.

To do this, we divide Y into three 3p × (9p − 2) matrices Y T
t (t = 1, 2, 3), that is, put

Y = (Y T
1 , Y T

2 , Y T
3 )T . Since the Hamming distance between any two distinct rows of X is

(3p− 1)− (p− 1) = 2p, the Hamming distance between any two distinct rows i1 and i2 of
Y is 3× 2p = 6p, if row i1 and row i2 are in the same submatrix. When rows i1 and i2 are
not in the same submatrix, then λi1i2 is the number of the column of X which is equal to
3p− 1. Thus, all λij ’s (i 6= j) of Y are 3p− 2 or 3p− 1.

We remark that the uniform design Y under WD2 constructed from X contains a
distinguished column (13p,23p,33p)T . And it achieves the lower bound (??) in Theorem
??.

Once we obtain a uniform design U9p(39p−2) Y as above, we can use it to create a
U27p(327p−2) in the following steps.

1 On the distinguished column of Y , (13p,23p, 33p)T , define six column vectors z(t) =
(z1t, z2t, · · · , z27pt)T (t = 1, 2, · · · , 6) such that
for t = 1, 2, 3,

zit =





yi(27p−2) if 1 ≤ i ≤ 9p,

y(i−9p)(27p−2) + t (mod 3) if 9p < i ≤ 18p,

y(i−18p)(27p−2) − t + 3 (mod 3) if 18p < i ≤ 27p;
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for t = 4, 5, 6,

zit =





yi(27p−2) if 1 ≤ i ≤ 9p,

y(i−9p)(27p−2) + t (mod 3) if 9p < i ≤ 18p,

y(i−18p)(27p−2) − t + 4 (mod 3) if 18p < i ≤ 27p.

2 On any other column, define three column vectors z(jt) = (z1,jt, z2,jt, · · · , z27p,jt)T

(t = 1, 2, 3) such that

zi,jt =





yij if 1 ≤ i ≤ 9p,
y(i−9p)j + t (mod 3) if 9p < i ≤ 18p,

y(i−18p)j − t + 3 (mod 3) if 18p < i ≤ 27p.

3 Append a column (19p,29p,39p)T to the matrix consisting of the above columns to
form a new matrix Z.

It is readily checked that Z is the desired U27p(327p−2), whose λij ’s all equal 9p − 2 or
9p − 1. The design Z also contains a distinguished column (19p,29p,39p)T and achieves
the lower bound (??) in Theorem ??. Start with Z and employ the above steps recursively
we can get a uniform design U3tp(33tp−2) for any t ≥ 4.

Example 3.4 Start with the following uniform design U6(35) which achieves (??) in The-
orem ??:

Table 1: U6(35) under WD2

row 1 2 3 4 5
1 1 1 1 1 1
2 1 2 2 2 2
3 2 1 2 3 3
4 2 3 3 2 1
5 3 3 1 3 2
6 3 2 3 1 3

Now apply our recursive method described above to get a uniform design U18(316)
under WD2 as follows.

In a similar vein, we can easily establish the following Theorem, which was stated
under the name “Orthogonal Arrays” in Hedayat, Sloane and Stufken (1999) without
proof.

Theorem 3.5 Let t be a positive integer. If a uniform design U3p(3
3p−1

2 ) achieving the

lower bound (??) in Theorem ?? exists, then a uniform design U3tp(3
3tp−1

2 ) achieving (??)
also exists.
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Table 2: U18(316) under WD2

row 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1
3 2 2 2 1 1 1 2 2 2 3 3 3 3 3 3 1
4 2 2 2 3 3 3 3 3 3 2 2 2 1 1 1 1
5 3 3 3 3 3 3 1 1 1 3 3 3 2 2 2 1
6 3 3 3 2 2 2 3 3 3 1 1 1 3 3 3 1
7 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
8 2 3 1 3 1 2 3 1 2 3 1 2 3 1 2 2
9 3 1 2 2 3 1 3 1 2 1 2 3 1 2 3 2
10 3 1 2 1 2 3 1 2 3 3 1 2 2 3 1 2
11 1 2 3 1 2 3 2 3 1 1 2 3 3 1 2 2
12 1 2 3 3 1 2 1 2 3 2 3 1 1 2 3 2
13 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3
14 3 2 1 1 3 2 1 3 2 1 3 2 1 3 2 3
15 1 3 2 3 2 1 1 3 2 2 1 3 2 1 3 3
16 1 3 2 2 1 3 2 1 3 1 3 2 3 2 1 3
17 2 1 3 2 1 3 3 2 1 2 1 3 1 3 2 3
18 2 1 3 1 3 2 2 1 3 3 2 1 2 1 3 3
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