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The uniform design is one of space filling designs and has been widely used
in computer and industrial experiments. Many methods for construction of
uniform designs or nearly uniform designs, such as the glp method, optimization
method etc. have been proposed. A nearly uniform design is a design with
low-discrepancy, where the discrepancy is a measure of uniformity. Various
discrepancies have been suggested. To find a uniform design for n runs and
s factors under a given discrepancy is a NP hard problem in the sense of
computation complexity when n → ∞ and s > 1. In this paper we propose
a new method, called the cutting method, for construction of nearly uniform
designs. It shows that the computation load of the new method is light and
designs obtained by the new approach have better uniformity.
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1. Introduction

Computer experiments have been used in various fields of science and engineering to describe complicated

physical phenomena which is governed by a number of equations, or by several softwares. Here relationships

between the input variables and the output in a system have no analytic expressions. For studying properties

of the system one wishes to find an approximate model that is much simpler than the true one and has an

analytic expression. Suppose that the output y is determined by

y = g(x1, · · · , xs) = g(x), x = (x1, · · · , xs)′ ∈ T, (1.1)
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where the function g has no analytic formula and T is the input space. Based on a training data set

{(xk, yk) = (xk1, · · · , xks, yk), k = 1, · · · , n} we wish to find an approximate model

y = ĝ(x1, · · · , xs) = ĝ(x), x ∈ T, (1.2)

which is close to the real one. Therefore, we need

(a) a space filling design; and

(b) various modelling techniques.

A comprehensive review on computer experiments can refer to Sacks et al.[16], Bates et al.[1] and Koehler

and Owen[13]. In this paper we focus on construction of space filling designs.

The uniform design, proposed by Fang and Wang in 1980 (see [2] and [18]), is one kind of space filling

designs and has been widely used in computer experiments. Let n denote the number of runs, s the number

of input variables and T the input space in a system where one wants to implement computer experiments.

A uniform design seeks n points, denoted by Pn = {x1, · · · ,xn}, to be uniformly scattered on T . Thus one

needs a measure of uniformity and a way of finding a uniform design for given (n, s, T ). Let D be a measure

of uniformity such that the lower D-value the set Pn has, the more uniform on the space T the set Pn is.

In Section 2 we shall introduce some measures of uniformity: star discrepancy, symmetrical discrepancy and

centered L2-discrepancy. When we say ‘discrepancy’ in this paper, it means that we shall choose one of

these discrepancies. A uniform design P∗n on T minimizes D-value on all designs of n points on T . In most

experiments the input space T is a rectangle [a,b] = [a1, b1] × · · · × [as, bs]. Without loss of any generality

the input space can be assumed to be a unit cube Cs = [0, 1]s, if a linear transformation is considered.

To search a uniform design is a NP hard problem in the sense of computation complexity. Therefore, for

reducing the computation complexity some structure of experimental points has to be considered. In the

literature the so-called U-type design has been widely used for construction of uniform designs. There is a

unique UD { 1
2n , 3

2n , · · · , 2n−1
2n } for the case of one input variable (i.e. s = 1) under the star discrepancy, the

symmetrical discrepancy and the centered L2-discrepancy (see [9], [14] and [5] for the details). Choosing n

equi-distance points { 1
2n , 3

2n , · · · , 2n−1
2n }, or equivalently {1, 2 · · · , n} for each input variable, a set of lattice

points formed by these marginal points has ns points and a lattice design is a subset of these ns points.

Definition 1 A U-type design, denoted by U(n, ns), is a n× s matrix and each column is a permutation of
{1, 2, · · · , n}. The set U(n, ns) is the class of all U(n, ns)’s.

Let U = (ukj) be a U-type design U(n, ns) and let xk = (xk1, · · · , xks), where

xkj =
2ukj − 1

2n
, k = 1, · · · , n; j = 1, · · · , s.

Then the set Pu = {xk.k = 1, · · · , n} is a lattice design on Cs and is called the induced design of U . Let D

be a measure of uniformity on Cs. We define the D-value of U as D(U) = D(Pu).

2



Definition 2 A U-type design that minimizes D-value on U(n, ns) is called a uniform design (UD) under
the measure of uniformity D and is denoted by Un(ns)

For given (n, s) to find a uniform design Un(ns) is still a NP hard problem when n and s increase. Therefore,

we need some efficient methods of finding a UD or a nearly uniform design (NUD), a design with lower D-

value in a certain sense. Wang and Fang [18] employed the good lattice point method in quasi-Monte Carlo

methods and found NUDs with n ≤ 31, s ≤ 15. Fang et al.[7] proposed a construction method based on Latin

squares. Fang [10] suggested a way for constructing NUDs via orthogonal designs. Winker and Fang [20] and

Fang, Ma and Winker [5] employed the threshold accepting method, a powerful optimization method, to find

UDs/NUDs that can be downloaded in the world web site: http://www.math.hkbu.edu.hk/UniformDesign/

(UD-web for short).

However, the number of runs and the number of factors of the UDs in the UD-web and in the literature

are still small, i.e., n ≤ 50 and s ≤ 15. It is not enough for computer experiments. Alternatively, Fang and

Qin [6] proposed a way to construct NUDs with a large number of runs by collapsing two uniform designs.

By this way we can easily obtained a lot of NUDs, but the uniformity of designs by their method are not

good enough. Therefore, we need more efficient ways to generating NUDs with a large number of runs.

In this paper we propose a new method, called the cutting method, for construction of NUDs. The

paper is organized as follows. Three measures of uniformity are introduced in Section 2. Section 3 gives idea

of the cutting method and its algorithm. Section 4 shows that the cutting method has good performance in

the sense of computation complexity and uniformity of the resulting NUDs. The final section gives concluding

remarks.

2. Measures of Uniformity

Let P = {x1, · · · ,xn} be a set of n points in the s-dimensional unit cube Cs = [0, 1)s, where xk =

(xk1, · · · , xks). Many different measures of uniformity of P have been defined (cf. Fang and Wang [9]

and Hickernell [11]). A reasonable measure should be invariant under reordering the runs and relabeling the

factors. The most popular measure of uniformity in quasi-Monte Carlo methods is the star Lp-discrepancy.

Denote the empirical distribution of P by FP(x) where

FP(x) = FP(x1, · · · , xs) =
1
n

n∑

k=1

I(xk1 ≤ x1, · · · , xks ≤ xs), (2.1)

where I(A) is the indicator function of A, i.e., I(A) = 1 if A is true, otherwise I(A) = 0. Let F (x) denote

the uniform distribution on Cs. The star Lp-discrepancy is defined by ||FP(x)− F (x)||p, where || · ||p is the

Lp-norm. When p →∞, the limiting measure is called the star discrepancy which has the expression

D(P) = max
x∈Cs

|FP(x)− F (x)|. (2.2)
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The star discrepancy is just the Kolmogorov-Smirnov statistic in the goodness-of-fit test. The star discrep-

ancy has been widely used in quasi-Monte Carlo methods, statistics as well as in construction of UDs (see

Winker and Fang [20]). The star discrepancy is not easy to be calculated (See Winker and Fang [19]) and

is not invariant under coordinate rotation, i.e. the origin plays a special role among all 2s corner points of

Cs. A natural idea is that all the 2s corner points play the same role for measuring uniformity of the set

P. By a suitable rotation of coordinates each corner point of Cs would be the origin, and we shall have 2s

star discrepancies, whose average is called symmetrical discrepancy, denoted by SD(P). The symmetrical

discrepancy was proposed by Ma [14] who obtained a number of good properties of the symmetrical discrep-

ancy. Alternatively, Hickernell [11] defined the centered L2-discrepancy, denoted by CD(P), that is invariant

under coordinate rotation, and derived a computational formula for CD(P) as follows

(CD(P))2 =
(

13
12

)s

− 2
n

n∑

k=1

s∏

j=1

(1 +
1
2
|xkj − 0.5| − 1

2
|xkj − 0.5|2)

+
1
n2

n∑

k=1

n∑

j=1

s∏

i=1

[
1 +

1
2
|xki − 0.5|+ 1

2
|xji − 0.5| − 1

2
|xki − xji|

]
. (2.3)

The above three discrepancies have been used in our study. For saving the space we demonstration the

method and examples only under the centered L2-discrepancy.

3. The Cutting Method

It is known that the good lattice point (glp) method in quasi-Monte Carlo methods has been appreciated by

many authors due its economic computation and good performance (see, for example, Hua and Wang [12]

and Shaw [17]). In particular, the glp method with a power generator has the lowest computation complexity

among various methods in quasi-Monte Carlo methods and a good performance in the sense of uniformity.

Suppose that we want to have a uniform design Un(ns). Let Up be a uniform design Up(ps), where n < p

and p is a prime, and let Pu be its induced design. Let D be a proper subset of Cs and P be the set of

points of Pu fell on D. Then points in P are uniformly scattered on D from the theory of quasi-Monte Carlo

methods. This is the key idea of the cutting method. The cutting method proposed in this paper chooses

a suitable rectangle in Cs such that there are exact n points of Pu falling in this rectangle. These n points

will form a NUD Un(ns) by some linear transformations. Let us introduce the glp method and the cutting

method .

(A) The good lattice point method with a power generator.

For given positive integer pair (p, s), we can generate a NUD Up(ps) by the following steps:
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Step 1. Find the candidate set of positive integers

Ap,s = {a : a < p, g.c.d.(aj , p) = 1, j = 1, · · · , s},

where g.c.d.(e, f) is the great common divisor of e and f .

Step 2. For each a ∈ Ap,s, construct a U-type design Ua = (ua
kj) as follows:

ua
kj = kaj−1 (mod p), k = 1, · · · , p; j = 1, · · · , s,

where the multiplication operation modulo p is modified such that the resulted integer is between 1 and p.

Step 3. Minimize D(Ua) on Ap,s, i.e., find a a∗ ∈ Ap,s such that

D(Ua∗) = min
a∈Ap,s

D(Ua).

Then the design Ua∗ is a NUD Up(ps).

The cardinality of Ap,s, denoted by |Ap,s|, is determined by φ(φ(p)) if s = p− 1, where

φ(n) = {h : h is an positive integer, h < n, g.c.d.(n, h) = 1}

is the Euler function. When s < p−1, |Ap,s| falls in [φ(φ(p)), p−1]. |Ap,s| decreases as s increases. For each

positive integer n there is a unique prime decomposition n = pr1
1 · · · prt

t , where p1, · · · , pt are different primes

and r1, · · · , rt are positive integers. Then the Euler function φ(n) = n(1− 1
p1

) · · · (1− 1
pt

). When n is a prime,

it is easy to see φ(n) = n− 1. For example, φ(31) = 30 as 31 is a prime. The prime decomposition of 30 is

30=2*3*5 and φ(30) = 30(1− 1
2 )(1− 1

3 )(1− 1
5 ) = 8. So the cardinality of A31,5 is in [φ(φ(31)), 31−1] = [8, 30].

The numerical calculation shows that the cardinality of A31,5 equals to 26. In step 3, we need to compare

only 26 U-type design candidates if we choose p = 31. Many NUDs were generated by the above method,

for example, Fang [2] and Fang and Ma [4].

The glp method has some disadvantage, for example, φ(p) may be much less than p and |Ap,s| is smaller,

when p is not a prime. Some modifications of the glp method have be raised. Let Up be a NUD Up(ps)

generated by the above method, where p is a prime. Deleting the last row from this design, the remaining

(p− 1) points form a NUD Up−1((p− 1)s). Fang and Li [3] showed that many NUDs obtained by this way

have lower discrepancy than the corresponding NUDs generated by directly using glp method, as p− 1 is an

even number and φ(p− 1) < (p− 1)/2. Ma [15] suggested to shift points generated by the glp method.

(B) The cutting method and its algorithm

Let Up(ps) be a UD/NUD and Pu be its induced design on Cs and R be a rectangle in Cs. Let P be the

set of points of Pu fell on R. Then points in P are uniformly scattered on R from the theory of quasi-Monte

Carlo methods. Let us first see an example.
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Example 1 A UD U30(302) was obtained by Fang, Ma and Winker [5] as follows

U30 =
(

24 23 1 9 5 11 19 6 21 3 12 15 20 18 17
25 6 12 18 16 7 4 9 11 3 14 20 30 15 24

26 7 4 28 27 25 13 14 29 22 8 2 16 30 10
2 29 21 13 28 17 27 1 8 19 5 26 10 22 23

)′
.

Its reduced design on C2 is plotted in Figure 1(a). If we wish to have a NUD U10(102) from this U30, we

can choose ten successive points according to the first coordinate (Figure 1(b)) or according to the second

coordinate (Figure 1(c)). For each coordinate we can wrap the square such that position 0 and position

1 to be at the same location. By this wrapping consideration, ten successive points can be separated in

two rectangles: some points are near to 0 while others are near to 1 (Figure 1(d)). There are 60=30*2

such subsets of 10 points. The ten points in each cutting are uniformly scattered in the related (wrapped)

rectangle. By a linear transformation the ten points in each cutting can be transformed into a unit square

and the transfered points are uniformly scattered on the unit square. So we have 60 sets of 10 points, or

60 designs of 10 runs. Suppose that the centered L2-discrepancy (CD) is chosen as measure of uniformity.

Finally, we choose one design with smallest CD-value among these 60 designs. This design is a NUD U10(102)

with CD=0.0543 and is given by

CU10 =
[

1 2 3 4 5 6 7 8 9 10
5 9 1 7 3 8 4 10 2 6

]
.

Its reduced design is plotted in Figure 2(a). Fang, Ma and Winker [5] found a uniform design U10(102) with

CD=0.0543 by the threshold accepting algorithm as follows

U10 =
[

1 2 3 4 5 6 7 8 9 10
5 9 1 7 3 10 4 6 2 8

]
.

Its induced design is plotted in Figure 2(b). Note that CU10 obtained by the cutting method is a uniform

design U10(102), as it has the same CD-value as U10. If you directly employ the glp method, a NUD can be

found

Uglp,10 =
[

1 2 3 4 5 6 7 8 9 10
3 6 9 2 5 8 1 4 7 10

]
.

Its CD = 0.0614 is larger than the CD-value of CU10 and U10 and its uniformity is worse than that of CD10

and U10.
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Figure 1: The cutting method
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Figure 2: Plots of The Induced Designs of Two U10(102)′s

From the above example, it shows that the cutting method has a good performance in construction of

UDs/NUDs. Now, we give the algorithm of the cutting method.
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Step 1. For given (n, s), find a NUD Up(ps), where p >> n and p or p + 1 is a prime, and calculate its

induced design Pu = {c1, · · · , cp}. The design Up(ps) or Pu is called initial design.

Step 2. Denoted by C = (cij). For l = 1, · · · , s reorder rows of C by sorting the jth column of C and

denoted the reordered matrix by C(l) = (c(l)
kj ).

Step 3. For m = 1, · · · , p, let C(l,m) = (c(l,m)
kj ), where

c
(l,m)
kj =





c
(l)
k+m−n−1 j , m > n, k = 1, · · · , n,

c
(l)
k j , m ≤ n, k = 1, · · · , m− 1,

c
(l)
k+p−n j , m ≤ n, k = m, · · · , n,

j = 1, · · · , s.

Step 4. Relabel elements of the jth column of C(l,m) by 1, 2, · · · , n according to magnitude of these

elements. The resulted matrix becomes a U-type design U(n, ns) and is denoted by U (l,m). We have ps such

U-type designs.

Step 5. For a given measure of uniformity D, compare ps designs U (l,m) obtained in the previous step

and choose one with the smallest D-value. That one is a NUD Un(ns).

4. Performance of The Cutting Method

The cutting methods proposed in the previous section has several advantages in computation complexity

and uniformity of designs obtained by this method.

(A) Complexity of the computation for finding an initial design

Let Pp be a sequence of point sets generated by some quasi-Monte Carlo method, where p is a prime and

Pp has p points in Cs. The best convergence rate of the star discrepancy D(Pp) or symmetrical discrepancy

SD(Pp) is O(p−1(log p)s−1) as p → ∞. If this sequence is generated by glp method, the best convergency

rate becomes O(p−1(log p)s) that is slight lower than O(p−1(log p)s−1). Furthermore, if the sequence is

constructed by the glp method with a power generator, the best rate reduces to O(p−1(log p)s log log p) that

is slight lower than O(p−1(log p)s) (see Fang and Wang [9]). This fact ensures that the initial design Pp has

a good uniformity. To find such an initial design we need to compare only m designs of p runs and s factors,

where m ∈ [φ(φ(p)), p− 1].

(B) Comparisons between the cutting method and glp method

We have done some comparisons among the glp method, optimization with TA algorithm and cutting

method, like in Example 1. For illustration we give two examples below.

Example 2. Construction of NUDs for n = 4, · · · , 29 and s = 2, 3, 4, 5

We compare the following three methods for construction of the above designs. (1) By the use of the TA

algorithm for search UDs Un(ns) (Cf. Fang, Ma and Winker [5]) required in this example, all NUDs can be
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downloaded from the world web site http://www.math.hkbu.edu.hk/UniformDesign/. (2) We directly use

the glp method for generating nearly uniform designs. The latter can be found in Fang and Ma [4]. (3) For

applying the cutting method, the initial designs U30(30s) for s = 2, 3, 4, 5 are chosen from Fang, Ma and

Winker [5] and can be downloaded in the UD web.

Figure 3 give comparisons of centered L2-discrepancy between designs generated by the above three

methods. Obviously, the designs obtained by TA algorithm has the lowest CD-value. Designs obtained

by the cutting methods have better uniformity than designs directly generated by the glp method. The

CD-value of designs obtained by the cutting methods are very close or equal to the corresponding design

obtained by the TA algorithm. Furthermore, all NUDs (n = 4, · · · , 29, s = 2, 3, 4, 5) are generated from

only four initial UDs. This fact shows that the cutting method needs a very limited computing time for

constructing many NUDs.

Example 3. Construction of NUDs for n = 100 and s = 5

The initial design is constructed by the glp method with a power generator. We choose a prime p = 151

and find the best a = 117 in the sense of the centered L2-discrepancy. The generator is (1, 117, 1172, 1173, 1174)

(mod 151)=(1, 117, 99, 107, 137). Now we have a NUD U151(1515) as an initial design. There are 151∗5 = 755

candidate designs by applying steps 2-4 of the cutting method. Among these candidates the design listed in

Table 1 has the lowest CD2 = 0.0012. If we directly use the glp method with a power generator, the generator

(1, 63, 632, 633, 634) (mod 101)= (1, 63, 30, 72, 92) is the best one and related NUD has CD2 = 0.0013. If we

use the TA algorithm, the search computing time is much longer than the time by the use of the cutting

method in this example.

5. Concluding Remarks

In this paper the cutting method for generating uniform designs and nearly uniform designs is proposed. For

given (n, s) the cutting method need to compare m designs of p runs and s factors, where m ∈ [φ(φ(p)), p−1]

and p >> n, and compare ps designs of n runs and s factors. We have show that the designs obtained by

the cutting method have better uniformity than those directly generated by the glp method. The cutting

method is good for construction of NUDs with n being large.

In the above three examples the centered L2-discrepancy is used as measure of uniformity. If we employ

the star discrepancy or the symmetrical discrepancy in these cases, the cutting method also show its advan-

tages mentioned before. This indicates that performance of the cutting method does not depend on specific

measure of uniformity.
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Figure 3: CD-value of designs generated by the glp, TA and cutting methods
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