
Constructions for Uniform Designs under
Wrap-around Discrepancy

Yu Tang1,2 Kai-Tai Fang1

1Department of Mathematics,
Hong Kong Baptist University

Hong Kong, P. R. China

2Department of Mathematics,
Suzhou University

Suzhou 215006, P. R. China

Abstract In this paper, two types of sufficient condi-
tions and lower-bounds for uniform designs under the wrap-
around discrepancy are proposed. Based on these results, we
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via computational optimization.
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1 Introduction

Uniform design is a type of “space filling” designs for computer experiments (Bates, et al.,
1996). To establish a uniform design one needs to find suitable design points so that they
are scattered uniformly on the experimental domain. If we restrict the domain to certain
lattice points, then the uniform design is also a fractional factorial design. For a given
measure of uniformity M , a uniform design has the smallest M -value over all fractional
factorial designs with n runs and m q-level factors. To search a uniform design is an NP
hard problem when (n, q,m) increase. Up to now, most of the existing uniform designs
are based on the balanced designs (or U-type designs).

A U-type design U(n; qm) denotes a design of n runs and m factors with q levels. This
design corresponds to an n×m matrix X = (x1, · · · , xm) such that each column xi takes
values from a set of q elements, say {1, 2, · · · , q}, equally often.

A U(n; qm) can be regarded as a set of n points in Qm, where Q = {1, 2, · · · , q}. Thus, a
uniform design can be explained as spreading experimental points as evenly as possible over
all possible level combinations selected from Qm. Using a map f : l → 2l−1

2q , l = 1, · · · , q,
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we can also regard a U(n, qm) as a set of n points on Q̃m, where Q̃ = {2l−1
2q , l = 1, · · · , q}.

Easy to see, the map f is one-one and linear. Throughout the paper, all the U(n, qm)s are
defined on Q̃m.

As a criterion to measure the degree of uniformity, the star Lp-discrepancy has been
widely used in quasi-Monte Carlo methods (or number-theoretic methods) as well as in
uniform design theory (see Fang and Wang (1994)). However, as pointed out in Hickernell
(1998), the Lp-discrepancy has some weakness. In that paper, Hickernell made some mod-
ifications of Lp-discrepancies. The wrap-around L2 discrepancy (WD2) is an attractable
and interesting one.

The wrap-around discrepancy is defined as follows:

(WD2(P))2 =
∑

u6=∅

∫

Cu

∫

Cu
[
N(P, Jw(x′u, xu))

n
− V ol(Jw(x′u, xu))]2dx′udxu,

where u is a non-empty subset of the coordinate indices {1, 2, · · · ,m}, |u| denotes the
cardinality of u, Cu is the |u|-dimensional unit cube involving the coordinates in u, N(P ∩
A) denotes the number of points of P falling in A, xu is the projection of x onto Cu, and

Jw(x′, x) =
m⊗

j=1

Jw(x′j , xj),

where ⊗ denotes the Kronecher product and

Jw(x′j , xj) =

{
[x′j , xj), x′j ≤ xj ;
[0, xj) ∪ [x′j , 1), x′j > xj .

An analytical expression of WD2(P) can be derived.

(WD2(P))2 = −(
4
3
)
m

+
1
n2

n∑

i=1

n∑

j=1

m∏

k=1

[
3
2
− |xik − xjk|(1− |xik − xjk|)

]
, (1)

where xi = (xi1, · · · , xim) ∈ P. From the definition, we can see that the wrap-around Lp-
discrepancy deals with uniformity over the unit cube P and all the projection of P over
Cu.

In Fang, Ma and Winker (2000) and Fang and Ma (2001), they applied the threshold
accepting algorithm to search uniform designs by minimizing discrepancy directly as the
objective function. A number of uniform designs or low-discrepancy designs were obtained,
which shows that the threshold accepting algorithm is effective in finding uniform designs.
However, due to the complication of the discrepancy itself, it is limited to search relatively
small designs. In this paper, we will first investigate the analytical expression of the
wrap-around discrepancy, then provide sufficient conditions for uniform designs under
the wrap-around discrepancy, which not only gives us lower-bounds of a uniform design
under the wrap-around discrepancy, but also helps us construct uniform designs or low-
discrepancy designs by applying combinatorial approach or by improving the efficiency of
the threshold accepting algorithm.
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2 Sufficient condition and lower-bound

As Equation (1) shows, the wrap-around discrepancy is only a function of those |xik −
xjk|(1 − |xik − xjk|)s. However, for a U-type design, such values can only be limited
into a definite set. Especially, for a U-type design U(n; qm), when q is even, these

products can only take
q

2
+ 1 possible values, i.e., 0,

2(2q − 2)
4q2

,
4(2q − 4)

4q2
, . . .,

q2

4q2
;

when q is odd, these products can only take
q + 1

2
possible values, i.e., 0,

2(2q − 2)
4q2

,

4(2q − 4)
4q2

, . . .,
(q − 1)(q + 1)

4q2
. Now for any two different rows of the design, i.e., two

distinct points xi = (xi1, xi2, . . . , xim), xj = (xj1, xj2, . . . , xjm) ∈ P, i 6= j, define αk
ij =

|xik − xjk|(1 − |xik − xjk|), and call them α-values. For a U-type design U(n; qm), the
number of each different α-value is a constant. Moveover, Simple calculation shows the
following table 1.

α− values number

0
mn(n− q)

2q
2(2q − 2)

4q2

mn2

q
4(2q − 4)

4q2

mn2

q
· · · · · ·
· · · · · ·

(q − 2)(q + 2)
4q2

mn2

q
q2

4q2

mn2

2q

α− values number

0
mn(n− q)

2q
2(2q − 2)

4q2

mn2

q
4(2q − 4)

4q2

mn2

q
· · · · · ·
· · · · · ·

(q − 3)(q + 3)
4q2

mn2

q
(q − 1)(q + 1)

4q2

mn2

q

Table 1: left is for q even; right is for q odd.

Different ways of arranging these α-values will result in different wrap-around discrepan-
cies. However, in all cases, the following Theorem states the best arrangement way under
the wrap-around discrepancy.

Theorem 2.1 For a U-type design U(n; qm), if each pair of two distinct rows contains
fixed numbers of different α-values, then it is a uniform design under wrap-around dis-
crepancy. In this case, the wrap-around discrepancy achieves its lower-bound. Define

∆ = −(
4
3
)
m

+
1
n

(
3
2
)
m

, then

(1) when q is even, the lower-bound is

∆+
n− 1
2n

(
3
2

)m(n−q)
q(n−1)

(
5
4

) mn
q(n−1)

(
3
2
− 2(2q − 2)

4q2

) 2mn
q(n−1)

· · ·
(

3
2
− (q − 2)(q + 2)

4q2

) 2mn
q(n−1)

;
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(2) when q is odd, the lower-bound is

∆ +
n− 1
2n

(
3
2

)m(n−q)
q(n−1)

(
3
2
− 2(2q − 2)

4q2

) 2mn
q(n−1)

· · ·
(

3
2
− (q − 1)(q + 1)

4q2

) 2mn
q(n−1)

.

Proof. . According to Equation (1), to minimize WD2(P)2 is to minimize
n−1∑

i=1

n∑

j=i+1

m∏

k=1

[
3
2
− αk

ij

]
.

Since
n−1∑

i=1

n∑

j=i+1

ln
m∏

k=1

[
3
2
− αk

ij

]
=

n−1∑

l=1

n∑

j=i+1

m∑

k=1

ln
[
3
2
− αk

ij

]
is a constant, we know that

when each pair of two distinct rows contains same numbers of different α-values, then

for any 1 ≤ i < j ≤ n,
m∏

k=1

[
3
2
− αk

ij

]
is a constant, which makes

n−1∑

i=1

n∑

j=i+1

m∏

k=1

[
3
2
− αk

ij

]

achieve its minimum. The expression of the lower-bound of the discrepancy is straightfor-
ward according to Table 1.

Notice that when conditions in Theorem 2.1 are satisfied and q 6= 3, then m must be a
multiple of n−1. When these conditions are not satisfied, we can also define the following
distance between any two distinct rows i and j:

δij =
m∑

k=1

ln(
3
2
− αk

ij).

Theorem 2.2 For a U-type design U(n; qm), if the distance between any two distinct rows
δij is a constant, then it is a uniform design under wrap-around discrepancy. In this case,

the wrap-around discrepancy achieves its lower-bound. Define ∆ = −(
4
3
)
m

+
1
n

(
3
2
)
m

, then

(1) when q is even, all δijs equals the following δ̄

δ̄ =
m(n− q)
q(n− 1)

ln
(

3
2

)
+

mn

q(n− 1)
ln

(
5
4

)
+

2mn

q(n− 1)
ln

(
3
2
− 2(2q − 2)

4q2

)

+ · · ·+ 2mn

q(n− 1)
ln

(
3
2
− (q − 2)(q + 2)

4q2

)
,

and the lower-bound is ∆ +
n− 1
2n

eδ̄;

(2) when q is odd, all δijs equals the following δ̄

δ̄ =
m(n− q)
q(n− 1)

ln
(

3
2

)
+

2mn

q(n− 1)
ln

(
3
2
− 2(2q − 2)

4q2

)

+ · · ·+ 2mn

q(n− 1)
ln

(
3
2
− (q − 1)(q + 1)

4q2

)
,

and the lower-bound is ∆ +
n− 1
2n

eδ̄.
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The proof of Theorem 2.2 is essentially the same as that of Theorem 2.1. In fact,
Theorem 2.1 is a special case of Theorem 2.2. However, Theorem 2.1 provides us a
direct way for constructing uniform designs under wrap-around discrepancy. For example,
if we apply combinatorial approach to construct designs which satisfies the conditions
in Theorem 2.1, then we can obtain uniform designs without any computation. While
Theorem 2.2 will be helpful for the computational search. Employ the same techniques
used in Fang, Lu and Winker (2003), we can accelerate the efficiency of the threshold
accepting algorithm. In the next sections, we will discuss some applications of Theorem
2.1 and Theorem 2.2.

3 Construction from resolvable 1-rotational design

In this section, we will construct uniform designs via combinatorial approach. First let us
introduce some terminologies in design theorem.

Definition 3.1 A (v, k, λ) design is an order pair (V,B) which satisfies the following
properties:

1. V is a set of cardinality v called points;

2. B is a collection of k-subsets of V (called blocks);

3. every pair of points of V occurs in exactly λ blocks.

A (v, k, λ) design (V,B) is 1-rotational if V = {∞} ∪ Zv−1, and the mapping φ from
i to i + 1 (mod v − 1), fixing ∞, is an automorphism of the design. Base blocks for an
1-rotational design are obtained by selecting representatives of the orbits of blocks under
the action of φ. Denote P = {P1, P2, . . . , Pq} to be a collection of base blocks, if P1, P2,
. . ., Pq is a partition of V , then the 1-rotational design is said to be resolvable.

Example 3.2 The following base blocks form a resolvable 1-rotational design (12, 3, 2):

{0, 1, 3}, {2, 6, 8}, {4, 5, 9}, {7, 10,∞}.

Now given a (v, k, λ) resolvable 1-rotational design, (V,B). Denote P = {P1, P2, . . . , Pq}
to be a collection of base blocks, we can construct a U-type design U(v; qv−1) from (V,B)
by the following steps.

1. Define a vector of length v, X1, in such a way that its i-th coordinate (i ∈ V ) has
value w ∈ {1, 2, . . . , q} if and only if point i is contained in the w-th block in P.

2. For each 2 ≤ k ≤ v−1, recursively define Xk in such a way that if the i-th coordinate
of Xk−1 has value w, then the φ(i)-th coordinate of Xk also has value w.

3. Take X = (XT
1 , XT

2 , · · · , XT
v−1), where XT

j is the transpose of Xj .
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Example 3.3 The following U-type design U(12; 411) is derived from the resolvable 1-
rotational design (12, 3, 2) in Example 3.2:

row 1 2 3 4 5 6 7 8 9 0 1
0 1 4 3 2 4 2 3 3 1 2 1
1 1 1 4 3 2 4 2 3 3 1 2
2 2 1 1 4 3 2 4 2 3 3 1
3 1 2 1 1 4 3 2 4 2 3 3
4 3 1 2 1 1 4 3 2 4 2 3
5 3 3 1 2 1 1 4 3 2 4 2
6 2 3 3 1 2 1 1 4 3 2 4
7 4 2 3 3 1 2 1 1 4 3 2
8 2 4 2 3 3 1 2 1 1 4 3
9 3 2 4 2 3 3 1 2 1 1 4
10 4 3 2 4 2 3 3 1 2 1 1
∞ 4 4 4 4 4 4 4 4 4 4 4

Moreover, for any 1 ≤ i, j ≤ q, define a collection Dij = {xi − yj (mod v − 1) | xi ∈
Pi, yj ∈ Pj , xi 6= yj}, and denote Ds(0 ≤ s ≤ q − 1) as the collection of all Dijs with
s ≡ j − i (mod q). According to the property of a resolvable 1-rotational design, we
can easily know that D0 is a collection of λ copies of V \{0} (the difference −∞ is not
considered here and after). Further, we have the following Theorem.

Theorem 3.4 Suppose (V,B) is a (v, k, λ) resolvable 1-rotational design. If for any 1 ≤
s ≤ bq−1c

2 , the collection of Ds and Dq−s is some copies of V \{0}, then the derived U-type
design from (V,B) satisfies the conditions in Theorem 2.1.

Consider the resolvable 1-rotational design (12, 3, 2) in Example 3.2, the collection of
D1 and D3 is six copies of V \{0}, and D2 itself is three copies of V \{0}, so the U-type
design U(12; 411) derived in Example 3.3 is a uniform design satisfying the conditions in
Theorem 2.1.

Theorem 3.4 states that when we happen to obtain a satisfied resolvable 1-rotational
design, then we can construct a desired uniform design without any computation. Al-
though the conditions in Theorem 3.4 may become stronger when the level q is larger,
further investigation into the special resolvable 1-rotational designs will be interesting and
attractable, especially for modest level q, say, q = 4 or 5.

4 The construction by computer search

As stated in Section 1, Threshold Accepting algorithm (TA) has been used in Fang, Ma
and Winker (2000) and Fang and Ma (2001) to find uniform designs and low-discrepancy
designs. However, in their papers, they use the discrepancy itself as the objective function,
which makes the calculation become complex. Here we use the distribution of the run
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distances, δijs, defined in Section 2 as the criterion to search for uniform designs and
low-discrepancy designs. Such method can make the computation become much easier.
According to Theorem 2.2, we know that when the distance between any two distinct rows
δij is a constant, then the design is a uniform design under wrap-around discrepancy. So
the aim of our computational optimization is to adjust these δijs as equally as possible.

Since the threshold accepting algorithm has been discussed extensively in many papers,
here we only list the main steps.

The algorithm is started with a randomly generated U-type design D0. Afterwards,
in each iteration the algorithm tries to replace the current solution Dc with a new one.
The new design Dn is generated in a given neighborhood of the current solution. In fact,
it is a small perturbation of the current solution. The distribution of the run distances
δijs is calculated for the new design and the result is compared with that of the current
design. If the result is better, or is worse but within our threshold limit, then we replace
the current solution with the new one. As with Wang and Fang (1998), the aim of using
a temporary worsening up to a given threshold value is to avoid getting stuck into a local
minimum.

The implementation of the algorithm to the approximation of uniform designs should
take into account several aspects.

Firstly, the definition of local neighborhoods. Obviously, in each iteration of the algo-
rithm, the new solution Dn should still be a U-type design. This requirement can be easily
fulfilled by selecting one column of the current solution Dc and exchanging two elements
in the selected column. Further modifications can be implemented in this approach. For
example, more than one columns can be chosen to exchange the elements. And the same
way can be performed by exchanging more than two elements in the selected columns.
If the algorithm is implemented in the parallel way, then the neighborhood concept can
restrict the exchange within a column to the s (s is a factor of the number of runs n)
cliques.

Secondly, the objective function. In each iteration, the discrepancy difference between
the new and the current design ∆ = WD2(Dn)−WD2(Dc) must be calculated. However,
For a single exchange of two elements in the selected column, there are altogether 2(n−2)
δijs updated. Thus instead of evaluating the wrap-around discrepancy in (1) again, we
need only recalculate the 2(n− 2) differences of eδij for those δij updated. As discussed in
Fang, Lu and Winker (2003), when we change the objective function from the discrepancy
difference between the two designs to some updates of δijs, we are hoped to dramatically
improve the performance of the algorithm. Moveover, Theorem 2.2 also gives us a hint
that the wrap-around discrepancy of a design will be smaller as all δijs become closer to δ̄.
So we can assign a weight to each δij according to its departure from δ̄. Those considerably
large or relatively small δijs are supposed to have more changes to be updated. When the
design scale is large, this improvement is also hoped to make sense to the effectivity of the
algorithm.

Finally, parameters. During the implementation of the threshold accepting algorithm,
we also need to define a threshold sequence τr, r = 1, . . . , nR and the number of iterations
for each τr. Details for determination of these parameters can refer to Winker (2001), we
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do not get much further here.

The implementation of this optimization approach will be carried out in the next
research.
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