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Abstract

This paper deals with the design problem for recovering a response surface by
using a nonparametric Bayesian approach. The criterion for selecting the designs
is based on the asymptotic average estimation variance, and three priors for the
response are specified. We found the optimal design that minimizes the criterion
over the lattice designs with s q-level factors and N runs. The approach we used is
similar to that in Ma et al. (2003). We also obtained alternative expressions and
lower bounds for the criterion corresponding to each of the three Bayes models
for the two-level U-type design by using the column balance and row distance
proposed in Fang et al. (2003).
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1. Introduction

This paper deals with the design problem of recovering a response surface f(x), x ∈ X ⊂ Rs,
from observations of f on a discrete set, ξ = {x1, . . . ,xN}, of points in X (called the design).
The treatment is Bayesian in that knowledge of the response is represented by a random
function.

Traditional Bayesian design theory deals with the design problem for fitting a linear regres-
sion model, where the prior of the response is a finite linear combination of known functions.
Dealing with the infinite dimensional problems, Steinberg(1985) investigated the problem of a
model-robust design for response surface study. In that paper, a Bayesian model is proposed
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that makes explicit assumptions about the inadequacy of an assumed model. The specifica-
tion on the prior distribution is based on the tensor products of Hermite polynomials. The
design criterion based on the model leads to reasonable choices of scale for two-level factorial
designs. Mitchell et al. (1994) studied the Bayesian model in which the prior may be infinite
dimensional. Specifically, they assume that the prior is the one which derives from taking
the response to have the form y(x) = µ + Z(x) + ε, where µ is a normal random variable,
Z is a Gaussian process independent of µ, and ε is a random error. They give three criteria,
which are called the D, G and A criteria, by using the asymptotic analysis from allowing the
error variance to be large. Yue (2001) described a Bayesian model in which the prior for the
response is specified based on a functional ANOVA decomposition. A criterion is developed
there by using the mechanics for asymptotic used in Mitchell et al. (1994), and a comparison
of some random and quasi-random point sets is given the Bayesian design.

In this paper, we still use the mechanics for asymptotic in Mitchell et al. (1994), and
consider U-type designs for the nonparametric Bayesian model. A q-level U-type design
U(N ; qs) is an N × s matrix, with each column having equal number of 2`−1

2q , ` = 1, · · · , q
. By a linear transformation a 2`−1

2q → `, a U(N ; qs) can also be presented as a matrix of
size N × s, with each column having equal number of ` = 1, · · · , q. Let U(N ; qs) be the set
of U(N ; qs)’s. Most of the uniform design are constructed based on U-type designs. Ma et
al. (2003) obtained exact conditions in which the uniform U-type design can imply design
orthogonality. Fang et al. (2003) studied the uniformity of two- and three-level U-type
designs based on the centered and wrap-around L2-discrepancies. They developed some new
representations and lower bounds of the L2-discrepancies in terms of column balance and
Hamming distances of the rows, respectively.

In the spirit of formulation presented by Mitchell et al. (1994), we take five covariance
kernels into account for the response. For each kernel, the asymptotic expected estimation
variance is reexpressed as functions of column balance, and also as functions of Hamming
distances of the rows by using the approach of Fang et al. (2003). And the lower bounds on
the asymptotic expected estimation variance are given, which can be used as bench marks in
searching U-type design for the Bayesian model.

In Section 2, we describe the Bayesian models and the criterion for choosing designs based
on the asymptotic expected estimation variance. In Section 3, we found the optimal design
that minimizes the criterion over the lattice designs with s q-level factors and N runs. In
Section 4, We derive alternative expressions and lower bounds for the criterion corresponding
to each of the three Bayes models for the two-level U-type design by using the column balance
and row distance. A Summary is given in Section 5.

2



2. Asymptotic Bayes criterion

According to Mitchell et al. (1994), we assume that the prior is the one which derives from
taking the response have the form

f(x) = β + Z(x), (1)

where β is a normal random variable with mean 0 and variance σ2
β , and Z is a Gaussian

process independent of β, with mean 0 and covariance function

cov[Z(x), Z(t)] = ηK(x, t),

where η ∈ (0,∞) is a parameter.
Let yi represent an observation taken at the experimental setting xi ∈ X ,

yi = f(xi) + εi, i = 1, · · · , N,

where the terms εi (i = 1, · · · , N) are uncorrelated random variables with mean 0 and constant
variance σ2

ε . Let y = (y1, . . . , yN )′. Then the prior specification above implies that f(x)
will have a normal posterior distribution. Thus we estimate f by its posterior expectation,
E[f(x)|y], and assess the estimation accuracy by its posterior variance, var[f(x)|y], which
we call estimation variance.

Let k(x) be the N -vector whose i-th component is K(x,xi), i.e.,

k(x) = (K(x,x1), . . . , K(x,xN ))′,

and let K be the (N ×N)-matrix whose (i, j)-th element is K(xi,xj). Then the estimation
variance for each x ∈ X is

var[f(x)|y] = η
[
ν + K(x,x)− (ν1′N + k(x)′)(ν1N1′N + K + ωIN )−1(ν1N + k(x))

]
,

where ν = σ2
β/η, ω = σ2

ε/η, and 1N is the N -vector of 1’s. Note that ν and ω can be considered
as the variance of β and εi relative to the variance of the random process Z, respectively.

A natural criterion by which to compare the estimation variance functions for different
designs is a weighted average using some weighted function, ρ(x). We define the average
weighted estimation variance, Vavg, for an experimental design by

Vavg = σ−2
ε

∫

X
var[f(x)|y]ρ(dx).

Using the asymptotics in Mitchell et al. (1994), we allow both ν and ω to be large while
γ = ν/ω is held fixed. Defining

α = 1/ω, γ̂ = γ/(1 + Nγ),
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the average estimation variance can then be expressed by

Vavg = γ̂ + α




∫

X
K(x,x)ρ(dx)− 2γ̂

N∑

i=1

∫

X
K(x,xi)ρ(dx) + γ̂2

N∑

i,j=1

K(xi,xj)


 + O(α2).

Ignoring terms of order O(α2), a good design ξ = {x1, · · · ,xN} should be selected so that the
following quantity, Ψ(ξ;K), is as small as possible:

Ψ(ξ;K) =
∫

X
K(x,x)ρ(dx)− 2γ̂

N∑

i=1

∫

X
K(x,xi)ρ(dx) + γ̂2

N∑

i,j=1

K(xi,xj). (2)

Note that if γ̂ = 1/n then Ψ(ξ;K) becomes a discrepancy of the point set ξ based on the
reproducing kernel K except a constant term (Hickernell, 1998).

In what follows, we will assume that the experimental domain is the s-dimensional unit
cube [0, 1]s with uniform measure ρ(dx) = dx, and consider the following two covariance
kernels:

K1(x, t) =
s∏

r=1

[min(xr, tr)− xrtr],

K2(x, t) =
s∏

r=1

(1− |xr − tr|) ,

K3(x, t) =
s∏

r=1

[
1 + θ

(
1
3

+
x2

r + t2r
2

−max(xr, tr)

)]
,

(3)

where θ ∈ (0, 1) is a parameter that specifies the rate at which higher-order interactions are
discounted.

To understand K1 and K2, we consider the one-dimensional case. For s = 1, K1(x, t) =
min(x, t) − xt is the covariance kernel of the Brownian bridge on the function class {h ∈
C([0, 1]) : h(0) = h(1) = 0}. The covariance kernel K2 is the covariance kernel of the sum
h1(x) + h2(1− x) where h1 and h2 are independent and distributed according to the Wiener
measure on the class {h ∈ C([0, 1]) : h(0) = 0}.

As to the kernel K3, we consider a random function, F (x), say. We express F (x) in terms
of its ANOVA decomposition (Owen, 1992) as follows:

F (x) =
∑

u⊆{1,...,s}
Fu(xu),

where each Fu(Xu) is defined recurrently by

F∅ =
∫

[0,1]s
F (x)dx,

Fu(xu) =
∫

[0,1]ū

[
F (x)−

∑
v⊂u

Fv(xv)

]
dxū.
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Here, [0, 1]u denotes the space of values for components of xr with r ∈ u, xu denotes the
coordinate projection of x onto [0, 1]u. Putting independent priors on Fu, u ⊂ {1, . . . , s} as
follows:

F∅ ∼ N(0, 1),

Fu(xu) ∼ Bu(xu)−
∑
v⊂u

∫

[0,1]v
Bu(xu)dxv,

where Bu(xu) is a Brownian sheet with variance θ|u| where |u| is the cardinality of u. It
follows that the covariance kernel of F is K3(x, t) (Barry, 1986).

3. Optimal designs

In this section we find the design that minimizes Ψ(ξ;Kj) for j = 1, 2, 3 respectively, which
have N runs and s q-level factors. First we introduce some notation. According to Ma et al.
(2003), we define

G = {(l1, . . . , ls) | lr ∈ {1, . . . , q}, r = 1, . . . , s},
We consider the design ξ = {x1, . . . ,xN}, where each run xi is of the lattice form

xi =
(

2l1 − 1
2q

, . . . ,
2ls − 1

2q

)
, where (l1, . . . , ls) ∈ G. (4)

Given N , s and q, denote Ξ(N ; qs) as the set of all such ξ. Note that U(N ; qs) ⊂ G(N ; qs).
For a given design ξ ∈ Ξ(N ; qs), denote by n(l1,...,ls) the number of runs at the level-

combination (l1, . . . , ls) ∈ G, and let nξ be a qs-vector with elements n(l1,...,ls) arranged lexi-
cographically. For a given ξ ∈ Ξ(N ; qs), nξ/N can be regarded as a probability measure over
qs level-combinations. Therefore, extend nξ to be a measure on qs level-combinations.

3.1 The case with covariance kernel K1

We first consider the criterion Ψ(ξ;K1). Note that

∫

[0,1]s
K1(x,x)dx =

1
6s

,

∫

[0,1]s
K1(x,xi)dx =

s∏

r=1

[
1
8
− 1

2

∣∣∣∣xir − 1
2

∣∣∣∣
2
]

.

Then the quantity Ψ(ξ;K1) is

Ψ(ξ;K1) =
1
6s
− 2γ̂

N∑

i=1

s∏

r=1

[
1
8
− 1

2

∣∣∣∣xir − 1
2

∣∣∣∣
2
]

+ γ̂2
N∑

i,j=1

s∏

r=1

[min(xir, xjr)− xirxjr]. (5)

For the lattice design ξ with N -runs of the form (4), we define

al =
1
8
− 1

2

∣∣∣∣
2l − 1− q

2q

∣∣∣∣
2

, akl =
2min(k, l)− 1

2q
− (2k − 1)(2l − 1)

4q2
, k, l = 1, . . . , q.
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Then Ψ(ξ;K1) in (5) can be expressed as follows:

Ψ(ξ;K1) =
1
6s
− 2γ̂

∑

(k1,...,ks)∈G
n(k1,...,ks)

s∏

r=1

akr

+γ̂2
∑

(k1,...,ks)∈G

∑

(l1,...,ls)∈G
n(k1,...,ks)n(l1,...,ls)

s∏

r=1

akrlr .

Define a0 = (a1, . . . , as)′, A0 = (akl)q×q and as = ⊗sa0, As = ⊗sA0, where ⊗ is the Kronecker
product. By the definition of qs-vector nξ we can further express Ψ(ξ;K1) in the following
form

Ψ(ξ;K1) =
1
6s
− 2γ̂a′sn

′
ξ + γ̂n′ξAsnξ. (6)

Moreover, the matrix A0 has the following properties, which is useful in proving Theorem 1.
Lemma 1. Let a0 and A0 defined above. Then we have

(1) A−1
0 is a q×q tridiagonal symmetric matrix. Its diagonal elements are (3q, 2q1′q−2, 3q])′,

its all second diagonal elements are −q.

(2) A−1
0 1q = (2q, q1q−2, 2q)′.

(3) 1′qA
−1
0 1q = q(q + 2).

(4) A−1
0 a0 = (3/(4q), (q2 + 1)/(8q)1′q−2, 3/(4q))′.

(5) 1′qA
−1
0 a0 = (q3 − 2q2 + q + 10)/(8q).

Theorem 1. A lattice design ξ minimizes Ψ(ξ;K1) over Ξ(N ; qs) if and only if nξ is of
the following form:

nξ =
1

γ̂(8q)s

{
(q2 + 1)s ⊗s




6/(q2 + 1)
1q−2

6/(q2 + 1)


 +

Nγ̂(8q)s − (q3 − 2q2 + q + 10)s

(q + 2)s
⊗s




2
1q−2

2




}
.

(7)
In particular, for q = 2 the design ξ is a complete design with nξ = (N/2s)12s .

Proof. From (6) and the Lagrange multiplier method, let

L(nξ, λ) =
1
6s
− 2γ̂a′sn

′
ξ + γ̂n′ξAsnξ + λ

(
n′ξ1qs −N

)
.

The following system of equations




∂L

∂λ
= n′ξ1qs −N = 0,

∂L

∂nξ
= −2γ̂as + 2γ̂2Asnξ + λ1qs = 0
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gives

λ =
2γ̂1′qsA−1

s as − 2Nγ̂2

1′qsA−1
s 1qs

, (8)

and
nξ =

1
γ̂

A−1
s as − 1

2γ̂2
λA−1

s 1qs . (9)

From Lemma 1 we find that

A−1
s 1qs = qs ⊗s (2,1′q−2, 2)′,

A−1
s as =

(
q2 + 1

8q

)s

⊗s (6/(q2 + 1),1′q−2, 6/(q2 + 1))′,

and

1′qsA−1
s 1qs = [q(q + 2)]s, 1′qsA−1

s as =

(
q3 − 2q2q + 10

8q

)s

.

The result (12) follows from making use of these facts in (8) and (9). When q = 2, (12)
becomes nξ = (N/2s)12s .

3.2 The case with covariance kernel K2

We now consider the criterion Ψ(ξ;K2). Note that

∫

[0,1]s
K2(x,x)dx = 1,

∫

[0,1]s
K2(x,xi)dx =

s∏

r=1

[
1
4
−

∣∣∣∣xir − 1
2

∣∣∣∣
2
]

.

Then the quantity Ψ(ξ;K2) is

Ψ(ξ;K2) = 1− 2γ̂
N∑

i=1

s∏

r=1

[
1
4
−

∣∣∣∣xir − 1
2

∣∣∣∣
2
]

+ γ̂2
N∑

i,j=1

s∏

r=1

[1− |xir − xjr|]. (10)

For the lattice design ξ with N -runs of the form (4), define

bl =
1
4
−

∣∣∣∣
2l − 1− q

2q

∣∣∣∣
2

, bkl = 1−
∣∣∣∣
k − l

q

∣∣∣∣ , k, l = 1, . . . , q,

and b0 = (b1, . . . , bs)′, B0 = (bkl)q×q, bs = ⊗sb0, Bs = ⊗sB0. we can further express Ψ(ξ;K2)
in the following form

Ψ(ξ;K2) = 1− 2γ̂b′sn
′
ξ + γ̂n′ξBsnξ. (11)

The matrix B0 has the following properties.

Lemma 2. Let b0 and B0 defined above. Then we have

(1) B−1
0 is a q×q symmetric matrix. Its diagonal elements are (q(q+2)/[2(q+1)], q1′q−2, q(q+

2)/[2(q + 1)])′, its all second diagonal elements are −q/2, its (1, q)- and (q, 1)-elements
are q/[2(q + 1)], and all others are 0.
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(2) B−1
0 1q = (q/(q + 1), 0q−2, q/(q + 1))′.

(3) 1′qB
−1
0 1q = 2q/(q + 1).

(4) B−1
0 b0 = ((−2q2 + 2q + 3)/[4q(q + 1)], q−11′q−2, (−2q2 + 2q + 3)/[4q(q + 1)])′.

(5) 1′qB
−1
0 b0 = (2q − 1)/[2q(q + 1)].

Making use of this lemma and the way in the proof of Theorem 1 we can prove the following
theorem:

Theorem 2. A lattice design ξ minimizes Ψ(ξ;K2) over Ξ(N ; qs) if and only if nξ is of
the following form:

nξ =
1

γ̂[4q(q + 1)]s
{
⊗s



−2q2 + 4q + 3
4(q + 1)1q−2

−2q2 + 4q + 3


+[Nγ̂(2q(q+1))s−(2q−1)s]⊗s




1
0q−2

1




}
. (12)

In particular, for q = 2 the design ξ is a complete design with nξ = (N/2s)12s .

3.3 The case with covariance kernel K3

We note that K3(x, t) can be expressed by

K3(x, t) =
s∏

r=1

[
1 +

θ

2

(
1
6

+
∣∣∣∣xr − 1

2

∣∣∣∣
2

+
∣∣∣∣tr −

1
2

∣∣∣∣
2

− |xr − tr|
)]

,

and ∫

[0,1]s
K3(x,x)dx =

(
1 +

θ

6

)s

,

∫

[0,1]s
K3(x,xi)dx = 1.

Then the quantity Ψ(ξ;K3) is

Ψ(ξ;K3) =
(

1 +
θ

6

)s

− 2Nγ̂ + γ̂2
N∑

i,j=1

s∏

r=1

[
1 +

θ

2

(
1
6

+
∣∣∣∣xir − 1

2

∣∣∣∣
2

+
∣∣∣∣xjr − 1

2

∣∣∣∣
2

− |xir − xjr|
)]

.

(13)
For the lattice design ξ with N -runs of the form (4), we define

ckl = 1 +
θ

2

(
1
6

+
∣∣∣∣
2k − 1

2q
− 1

2

∣∣∣∣
2

+
∣∣∣∣
2l − 1

2q
− 1

2

∣∣∣∣
2

−
∣∣∣∣
k − l

q

∣∣∣∣
)

, k, l = 1, . . . , q,

and C0 = (ckl)q×q, Cs = ⊗sC0. It follows that

Ψ(ξ;K3) =
(

1 +
θ

6

)s

− 2Nγ̂ + γ̂n′ξCsnξ. (14)

Theorem 3. A lattice design ξ minimizes Ψ(ξ;K3) over Ξ(N ; qs) if and only if nξ is of
the following form:

nξ =
N

1′qsC−1
s 1qs

C−1
s 1qs .
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In particular, for q = 2 the design ξ is a complete design with nξ = (N/2s)12s .

Proof. From (14) and the Lagrange multiplier method, let

L(nξ, λ) =
(

1 +
θ

6

)s

− 2Nγ̂ + γ̂n′ξCsnξ + λ
(
n′ξ1qs −N

)
.

The following system of equations




∂L(nξ, λ)
∂λ

= n′ξ1qs −N = 0,

∂L(nξ, λ)
∂nξ

= 2γ̂2Csnξ + λ1qs = 0

gives λ = −2Nγ̂2/1′qsC−1
s 1qs , and

nξ = − 1
2γ̂2

λC−1
s 1qs =

N

1′qsC−1
s 1qs

C−1
s 1qs .

For the case with q = 2, we find that

C0 =
1
48




48 + 7θ 48− 5θ

48− 5θ 48 + 7θ


 , C−1

0 =
2

θ(48 + θ)




48 + 7θ −48 + 5θ

−48 + 5θ 48 + 7θ


 ,

and
C−1

s 12s = ⊗s
(
C−1

0 12

)
=

(
24

48 + θ

)s

12s .

Straightforward calculation yields that nξ = (N/2s)12s .

4. Alternative Formulations and Lower bounds for Ψ

In this section we give some alternative formulations and lower bounds for Ψ(ξ;Kj), j = 1, 2, 3,
respectively, by using the approach used in Fang et al. (2003).

4.1 Based on the column balance

Let UN×s be the matrix of a U-type design U(N, qs), whose elements are integers 1, . . . , q.
and let XN×s be the matrix induced form UN×s by mapping uir → xir = (2uir − 1)/(2q).
Denote by ur the r-th column of U , r = 1, . . . , s. For each m columns of U , say, uc1 , . . . ,ucm ,
define

Bc1,...,cm =
∑

1≤l1,...,lm≤q

(
n

(c1,...,cm)
l1,...,lm

− N

qm

)2

, B(m) =
∑

1≤c1,...,cm≤s

Bc1,...,cm/

(
s

m

)
, (15)

where n
(c1,...,cm)
l1,...,lm

is the number of rows in which the column group {uc1 , . . . ,ucm} takes the
level combination {l1, . . . , lm}, and the summation is taken over all possible level combinations.
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B(m) measures the closeness to orthogonality of strength m of the design U . Fang et al. (2003)
showed the following result:

Lemma 3. Let UN×s be the matrix of a U-type design U(N, qs). Then

B(m) =
N∑

i,j=1

∑

1≤c1,...,cm≤s

δ
(c1,...,cm)
ij /

(
s

m

)
− N2

qm
, (16)

where

δ
(c1,...,cm)
ij =

{
1, when xir = xjr for r = c1, . . . , cm,

0, otherwise.
(17)

For two-level U-type designs in U(N ; 2s), Ψ(ξ, Kj), j = 1, 2, 3, can be expressed as func-
tions of (B(1), . . . , B(s)).

Theorem 4. For a two-level design ξ ∈ U(N, 2s) with the design matrix U and induced
matrix X, we have

Ψ(ξ;K1) =
1
6s
− 2Nγ̂

(
3
32

)s

+ N2γ̂2
(

1
8

)s

+
γ̂2

16s

s∑

m=1

2m

(
s

m

)
B(m), (18)

Ψ(ξ;K2) = 1− 2Nγ̂

(
3
16

)s

+ N2γ̂2
(

3
4

)s

+
γ̂2

2s

s∑

m=1

(
s

m

)
B(m), (19)

and

Ψ(ξ;K3) =
(

1 +
θ

6

)s

− 2Nγ̂ + N2γ̂2
(

1 +
θ

48

)s

+ γ̂2
(

1− 5θ

48

)s s∑

m=1

(
12θ

48− 5θ

)m
(

s

m

)
B(m).

(20)

Proof. For two-level case, i.e., q = 2, the values of xir, the elements of X, are 1
4 and 3

4 .
Therefore, we have

∣∣∣∣xir − 1
2

∣∣∣∣ =
1
4
, min(xir, xjr)− xirxjr =

1
16

(
1 + 2δ

(r)
ij

)
, (21)

where δ
(r)
ij is as defined in (17). Substituting (21) into (10) and making use of the definition

of δ
(c1,...,cm)
ij yields

Ψ(ξ;K1) =
1
6s
− 2Nγ̂

(
3
32

)s

+
γ̂2

16s

N∑

i,j=1

s∏

r=1

(
1 + 2δ

(r)
ij

)

=
1
6s
− 2Nγ̂

(
3
32

)s

+
γ̂2

16s


N2 +

N∑

i,j=1

s∑

m=1

2m
∑

c1<···<cm

δ
(c1,...,cm)
ij


 .

(22)

The result (18) follows from (16) with q = 2.
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The results (19) and (20) can be proved in the same way. The theorem is proved.

The expressions (18), (19) and (20) allow us to obtain lower bounds for the quantities
Ψ(ξ;Kj), j = 1, 2, 3, respectively, over two-level U-type designs. Note that B(m) in defined
in (15) has a lower bound as follows (Fang et al. 2003):

B(m) ≥ RN,m,2

(
1− RN,m,2

2m

)
,

where RN,m,2 is the residual of N (mod 2m). We then have the following results:

Theorem 5. For a two-level U-type design U(N, 2s), we have

(1) Ψ(ξ;K1) ≥ Lcol
1 where

Lcol
1 =

1
6s
− 2Nγ̂

(
3
32

)s

+
N2γ̂2

8s
+

γ̂2

16s

s∑

m=1

2m

(
s

m

)
RN,m,2

(
1− RN,m,2

2m

)
. (23)

(2) Ψ(ξ;K2) ≥ Lcol
2 where

Lcol
2 = 1− 2Nγ̂

(
3
16

)s

+ N2γ̂2
(

3
4

)s

+
γ̂2

2s

s∑

m=1

(
s

m

)
RN,m,2

(
1− RN,m,2

2m

)
. (24)

(3) Ψ(ξ;K3) ≥ Lcol
3 where

Lcol
3 =

(
1 +

θ

6

)s

− 2Nγ̂ + N2γ̂2

(
1 +

θ

48

)s

+γ̂2

(
1− 5θ

48

)s s∑

m=1

(
12θ

48− 5θ

)m
(

s

m

)
RN,m,2

(
1− RN,m,2

2m

)
.

(25)

4.2 Based on the row distance

Let ξ be a design U(N, qs), and let X = (x′1, . . . ,x′N )′ be the corresponding design matrix,
where xi is its i-th row, i = 1, . . . , n. According to Fang et al. (2003), let dij be the number
of columns for which xi and xj take different values. Then λij = s − dij is the number of
columns for which xi and xj take the same value. The set {λij , 1 ≤ i < j ≤ n} characterizes
the relation between the lows of the design X. It is known that

∑

j 6=i

λij = s

(
N

q
− 1

)
, i = 1, . . . , N, (26)

and
∑

c1<···<cm

δ
(c1,...,cm)
ij =

(
λij

m

)
, (27)

where δ
(c1,...,cm)
ij is defined as in (17).
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We can express Ψ(ξ;Kj), j = 1, 2, 3, in terms of the λij as follows:

Theorem 6. For a two-level U-type design ξ ∈ U(N, 2k) with the design matrix X, we
have

Ψ(ξ;K1) =
1
6s
− 2Nγ̂

(
3
32

)s

+
γ̂2

16s

N∑

i,j=1

3λij , (28)

Ψ(ξ;K2) = 1− 2Nγ̂

(
3
16

)s

+
γ̂2

2s

N∑

i,j=1

2λij , (29)

Ψ(ξ;K3) =
(

1 +
θ

6

)s

− 2Nγ̂ + γ̂2
(

1− 5θ

48

)s N∑

i,j=1

(
48 + 7θ

48− 5θ

)λij

. (30)

Proof. Substituting (27) into (22) yields the expression (28). In the similar way, we can
prove (29) and (30).

The formulations of the Ψ(ξ;Kj), j = 1, 2, 3, in this theorem allow us to derive lower
bounds different from those in Theorem 4 by approach used in Fang et al. (2003).

Theorem 7. Let ξ be a two-level U-type design in U(N, 2s). Define λ = s(N − 2)/[2(N −
1)]. We then have

(1) Ψ(ξ;K1) ≥ Lrow
1 where

Lrow
1 =

1
6s
− 2Nγ̂

(
3
32

)s

+ Nγ̂2
(

3
16

)s

+
γ̂2

16s
N(N − 1)3λ. (31)

(2) Ψ(ξ;K2) ≥ Lrow
2 where

Lrow
2 = 1− 2Nγ̂

(
3
16

)s

+ Nγ̂2 +
γ̂2

2s
N(N − 1)2λ. (32)

(3) Ψ(ξ;K3) ≥ Lrow
3 where

Lrow
3 =

(
1 +

θ

6

)s

−2Nγ̂+Nγ̂2
(

1 +
7θ

48

)s

+ γ̂2
(

1− 5θ

48

)s

N(N−1)
(

48 + 7θ

48− 5θ

)λ

. (33)

Proof. Let Y be a random variable which is uniformly distributed on the set {λij , 1 ≤
i < j ≤ N}, and then

E(Y ) = s(N − 2)/[2(N − 1)] = λ,

according to (26).
To Prove (31), we define g(y) = 3y, which is a convex function of y. By Jenssen’s inequality

we then have
E[g(Y )] =

1
N(N − 1)

∑

1≤i6=j≤N

2λij ≥ g(E[Y ]) = 2λ,

and the lower bound (31) follows from (28) by noting that λii = s. In the similar way, we can
prove lower bounds (32) and (33).
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5. Summary

In this paper, we have considered the design problem for recovering a response surface by
using nonparametric Bayesian approach. The criterion for choosing design is developed based
on the average estimation variance by asymptotic used in Mitchell et al. (1994). Three priors
for the response are considered.

For each of the three priors, we have found the optimal design that minimizes the criterion
over the lattice designs with s q-level factors and N runs. The approach we used is similar
to that in Ma et al. (2003). It is shown that for the case with q = 2 the complete design is
optimal for each of the three Bayes models.

We also obtained alternative expressions and lower bounds for the criterion corresponding
to each of the three Bayes models for the two-level U-type design by using the column balance
and row distance proposed in Fang et al. (2003). These expressions and lower bounds can be
useful in searching the two-level U-type designs for the Bayes models. This will be our further
work to be done.
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